
Almost orthogonal polyhedra 
in general, and this one 

in particular

Robin Houston 

G4G15 

 

Figure 1



If everything has gone to plan, you will find among your gift exchange 
delights a smallish white plastic non-convex polyhedron that has 
twelve faces, and looks like Figure 1. 

The intention of this booklet is to answer some of the questions you may 
have about this object. In particular, it aims to answer the three primary 
questions: What?, How?, and Why?. 

If you have other questions, you are cordially invited to buttonhole me, or 
to email me at robin.houston@gmail.com. I may not know the answers, 
but I expect I shall enjoy thinking about your questions. 



What is it?

It is an almost orthogonal polyhedron: a polyhedron whose adjacent 
faces are orthogonal to each other, except on one edge. On this special 
edge, drawn in red in Figure 1, the faces meet at 45°. 

It is the simplest such polyhedron that is known to exist, or at any rate it 
is the simplest that I know. 

If the special edge is permitted to have some other dihedral angle, not 
necessarily 45°, then I know a simpler one, illustrated in Figure 2 below. It 
has eight triangular faces. Its two largest faces meet at an angle of 
arccos(-1/3) ≈ 109.5° on the blue edge, and all the other edges have a 
dihedral angle of 90° or 270°. 

Figure 2. An almost 
orthogonal octahedron



How did I construct it?

I began with the hexahedron shown in Figure 3. All its dihedral angles 
are right, with two exceptions: the red edge has a dihedral angle of 
135°, and the blue edge has a dihedral angle of arccos(-1/3) ≈ 109.5°. 

The red and blue edges are orthogonal to each other. 

Take three copies of this hexahedron. Glue two of them together, so that 
their red edges coincide and their blue edges are collinear and share an 
endpoint: you will obtain the octahedron of Figure 2. 

Scale down your octahedron by a factor of 2, so that its blue edge is the 
same length as the blue edge of your remaining hexahedron. 

Overlay the two objects, the scaled-down octahedron and the remaining 
hexahedron, so their blue edges coincide and the faces that meet at those 
edges are coplanar. You will notice that, in this arrangement, the interior 
of the octahedron is a strict subset of the interior of the hexahedron. 
Subtract the octahedron from the hexahedron: this has the effect of 
removing the edge whose dihedral angle is arccos(-1/3). The result is 
shown in Figure 4: an almost orthogonal decahedron whose non-right 
dihedral angle is 135° (marked in red on the diagram).  

Figure 3. This hexahedron is due 
to Sydler, of which more below.



This construction is not easy to visualise from diagrams alone. I have a set 
of 3D-printed models that may help: I can show them to you if you ask 
me. 

The final step is to take the complement of this decahedron with respect 
to a suitably-aligned box, as shown in Figure 5. 

The complement is the almost-orthogonal dodecahedron of Figure 1. 

Figure 4. An almost orthogonal decahedron 
whose non-right dihedral angle is 135°.

Figure 5



There are other ways to obtain a 45° almost-orthogonal polyhedron 
starting from the 135° almost-orthogonal polyhedron of Figure 4. For 
example, we could attach an isosceles right-triangular prism as shown in 
Figure 6. 

Or we could attach it as shown in Figure 7, which would make an 
imposing statue. 

Figure 6

Figure 7



In both cases, the back face is pentagonal, combining a rectangular face of 
the prism and a triangular face of the decahedron. 



It is interesting to deconstruct the decahedron of Figure 4 into three 
pieces: an isosceles right-triangular prism, and two pieces that are 
mirror images of each other and have rotational symmetry of order 

3. These pieces have seven faces, and we will refer to their shape as the 
fundamental heptahedron. This convex polyhedron has three edges whose 
dihedral angles are not right, drawn in red in Figure 8. These are mutually 
orthogonal, and each has a dihedral angle of 135°. 

Eight of these – four in each orientation – can be assembled into Jessen’s 
orthogonal icosahedron , illustrated in Figure 9. 1

 Børge Jessen. Orthogonal Icosahedra, Nordisk Matematisk Tidskrift 15, no. 2/3 (1967) pp 90–961

Figure 8. The fundamental 
heptahedron

The fundamental heptahedron is the 
convex hull of three mutually 

orthogonal copies of this 
quadrilateral, coinciding at the 

marked point



 

Figure 9. Jessen’s orthogonal icosahedron. It may be 
dissected into eight copies of the fundamental 

heptahedron, four in each orientation.



Why?

In 1900, David Hilbert proposed a list of 23 then-unsolved 
mathematical problems that he regarded as important. These 
problems exerted a strong influence on mathematics well into the 

second half of the 20th century. 

Hilbert’s Third Problem asked whether, given two polyhedra of the same 
volume, it is always possible to cut one of them into a finite number of 
polyhedral pieces and reassemble those pieces into the other. 

It was the first of Hilbert’s problems to be solved. Max Dehn showed that, 
in addition to volume, there is another quantity, determined by the 
polyhedron’s edges – now known as the Dehn Invariant – that always stays 
the same even when a polyhedron is cut into a finite number of 
polyhedral pieces and reassembled. Since a cube and a regular 
tetrahedron of the same volume have different Dehn invariants, it is 
impossible to cut up a cube and reassemble the pieces into a regular 
tetrahedron, or vice versa. 

Dehn’s rapid triumph suggested a more difficult question: is that the only 
obstruction? If two polyhedra have the same volume and the same Dehn 
invariant, then is it always possible to cut one of them into a finite 
number of polyhedral pieces and reassemble those pieces into the other? 

This harder question was eventually answered in the affirmative in 1965, 
by Jean-Pierre Sydler , a Swiss librarian who had studied the problem as a 2

PhD student in the 1950s, and afterwards continued to work on it in his 
spare time. 

For one part of his argument (in Chapitre 1), Sydler needed to construct a 
family of polyhedra with the property that we’re interested in here: 

 Sydler, J.-P.. “Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à 2

trois dimensions..” Commentarii mathematici Helvetici 40 (1965/66): 43–80.



adjacent faces are orthogonal to each other, except for one pair of 
adjacent faces that are at 45° to each other. 

The hexahedron of Figure 3 belongs to a family of hexahedra that Sydler 
constructs in Chapitre 1, and which play a key role in his construction: 
they are almost almost-orthogonal, i.e. they have two edges whose 
dihedral angles are not right. Those two non-right dihedral angles 𝛼 and 
𝛽 are related by the equation  

(3 + cos 2𝛼)(1 − cos 𝛽) = 4 

where 90° < α, β < 180°; letting α = 135° gives cos β = -1/3. 

Although Sydler’s construction is effective, he does not dwell on the 
particulars of the polyhedra that result. Much more recently (in 2017) 
Matthias Goerner  went through Sydler’s construction step-by-step and 3

created a 3D model of the resulting polyhedron, which proved to be 
hilariously complicated: 

 https://www.unhyperbolic.org/sydler.html3

Figure 10. You are not expected to understand this 
diagram, but to marvel at its complexity.



In July of 2022, Henry Segerman published a video  demonstrating a 3D 4

print of Goerner’s model, which inspired me to look for a simpler 
polyhedron with the same property. You’ve seen various results of that 
effort: my favourite is shown in Figure 1; Figures 6 and 7 show related 
alternatives. 

It has been conjectured by Goerner  that there exist almost-orthogonal 5

polyhedra whose non-right dihedral angle is any algebraic angle, i.e. any 
angle whose cosine (or equivalently sine) is an algebraic number. The 
plausibility of this conjecture relies on a theorem of Jessen.  6

However, Jessen’s proof is not effective: it does not yield an actual 
construction for any given angle. So we have an infinite collection of 
interesting geometric challenges: can we construct, for some particular 
algebraic angle α, an almost-orthogonal polyhedron whose remaining 
dihedral angle is α? 

Might there even be a general method to construct, for any algebraic 
angle, an almost-orthogonal polyhedron with two faces meeting at that 
angle?

 https://www.youtube.com/watch?v=tH6vLXMaCwQ4

 https://www.unhyperbolic.org/sydler.html5
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